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Algebraic geometrical methods in Hamiltonian mechanics
By P. vAN MOERBEKE

Department of Mathematics, Brandeis University, Waltham, Massachusetts 02254, U.S.A., and
Department of Mathematics, University of Louvain, B-1348 Louvaine-la- Neuve, Belgium

During the nineteenth century one of the main concerns in mechanics was to solve
Hamiltonian systems by quadrature in terms of elliptic and hyperelliptic functions.
The vein of research, abandoned for nearly a century, was entirely revived by the
recent findings about the Korteweg—de Vries equation. They shed new light and
perspective onto problems of finite-dimensional mechanics, which has led to effective
and systematic methods for deciding about the complete integrability of Hamiltonian
systems. The problems that can be captured by these methods have the common virtue
that, when run with complex time, most (complex) trajectories are dense on complex
algebraic tori; such a system is called algebraically completely integrable, which is
stronger than the customary notion of analytic integrability. Many old and new
systems enjoy this property and, in particular, a wide variety of systems that occur
in the context of orbits in Kac-Moody Lie algebras. This paper explains how the
behaviour at the ‘blow-up’ time of the solutions to the differential equations enables
one to decide about their integrability and also how to derive precise information
about the invariant surfaces of the system.

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Last century, mechanics was dominated by the question of whether a mechanical problem can
be solved by a finite number of algebraic operations which is termed solution ‘by quadrature’.
This was done, when possible, by finding appropriate variables for which the problem
separates; then the system evolves in phase space on low-dimensional manifolds. Proving that
a system is integrable by quadrature was very unsystematic and required a great deal of luck.
Jacobi (1866) himself was very much aware of this difficulty, and therefore I would like to quote
a paragraph from his famous Vorlesungen iiber Dynamik:

Die Hauptschwierigkeit bei der Integration gegebener Differentialgleichungen scheint in der Einfihrung der

richtigen Variablen zu bestehen, zu deren Auffindung es keine allgemeine Regel giebt. Man muss daher das

umgekehrte Verfahren einschlagen und nach erlangter Kenntniss einer merkwiirdigen Substitution die Probleme
aufsuchen, bei welchen dieselbe mit Gliick zu brauchen ist.

p
[\ \

—

< S Once expressed in the appropriate variables. the inverse of the solution could then be written

S —~ in terms of integrals of radicals of one or several polynomials; inversion of the latter problem

e g leads to the famous Jacobi—Abel inversion problem of Abelian integrals, which is one of the basic

50 @) theorems of algebraic geometry. In fact, during most of the last century the developments of

E O mechanics and algebraic geometry were closely intertwined. Within this circle of ideas are the
v

works of Clebsch, Jacobi, Kovalevskaja, Lagrange, Liouville, Neumann, and others. The most
prominent problems are the Jacobi geodesic flow on ellipsoids, the integrable cases of the
rotation of a solid body around a fixed point, by Euler, Lagrange and Kovalevskaja and the
integrable cases of the motion of a solid body in an infinite ideal fluid, by Kirchhoff, Clebsch,
Lyapunov, Steklov and others.

Unlike the problems above, which have polynomial invariants in large numbers, one may
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380 P. VAN MOERBEKE

require that the constants of motion be merely algebraic functions of the coordinates. In this
context, I must mention Bruns (1887), who established the absence of new algebraic integrals
in the three-body problem in addition to classical integrals (extended by Siegel (1936) to the
restricted three-body problem), and Husson (1907), who established that the three known cases
of solid bodies mentioned before are the only ones that possess an extra algebraic integral.

In addition to every new generation interpreting the notion of complete integrability in its
own way, astronomers and mathematicians have also introduced analytic integrability,
meaning that the problem has purely analytic integrals in sufficient number. This ties up with
the qualitative behaviour of the trajectories investigated by Poincaré; he pointed out that
complete integrability is an exceptional phenomenon and therefore the emphasis was shifted
towards non-integrability. Also, a study of the trajectories offers the advantage of coordinate
invariance. Non-integrable systems have the properties that the trajectories and, in particular,
the separatrices behave in a complicated way: the latter intersect each other transversely,
infinitely often. It is then possible, at least in small dimensions, to establish non-integrability of
a system very close to an integrable system by showing the appearance of homoclinic intersection
points after perturbation. The Melnikov integral method is such a test for low dimensions and
leads to establishing the absence of extra analytic integrals for such perturbed systems,
independent from the energy. This method, combined with other ideas, has been used recently
by Ziglin (1980, 1982, 1983) in the dynamics of the rigid body to show that the only
analytically integrable cases among bodies with fixed points are the three known cases.

But the methods just described generally lead to perturbation results and rarely to global
ones, i.e. given a large family of Hamiltonian systems, the question is whether one can decide
which subfamilies are completely integrable and whether one can find a systematic method
to integrate the problem. It now seems that this question can be answered to some extent, within
the framework of algebraic integrability in the sense discussed at first. The resolution of the
Korteweg—de Vries equation by inverse spectral methods played a crucial role in this
development and was at the origin of many new ideas and connections between mechanics,
spectral theory, Lie groups and algebraic geometry; they have provided new insights into the
old mechanical problems of the last century and many new ones as well. The study of specific
systems and equations have led to general schemes, mainly in the realm of Lie algebras, which
manufacture lots of completely integrable Hamiltonian systems; some of them can then be
recognized to be of genuine mechanical or physical significance. However, given a Hamiltonian
system, it often remains hard to fit it into any of these general schemes. All the systems that
come from those frameworks are algebraically completely integrable in a precise sense that I
will define below. Let me, for the sake of this paper, restrict myself to finite-dimensional systems
that are compact as well.

A Hamiltonian equation

i =flz) = J(@H/3z), zeRn,

skew symmetric matrix with polynomial entries in z,
J=J(z) = for which the corresponding Poisson bracket {H,, H;} (1)
= (0H,;/0z, JOH,;/0z) satisfies the Jacobi identity,

with polynomial right side will be called algebraically completely integrable (a.c.i.) when:
(i) except for the ‘trivial’ invariants H,, ..., H,, whose gradients are the null vectors of J, the

[ 46 ]
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system possesses m = %(n—k) polynomial invariants Hy ,, ..., Hy ., in involution {H;, H;} = 0,
having the property that for most values of ¢;€ R, the invariant manifolds

k+m
N {H,=¢,zeR"}

i=1
are compact, connected and, therefore, real tori by the Arnold-Liouville theorem.
(1) Moreover,

k-ﬁm m
H. = ¢,, ze C"} = complex algebraic torus ————
i=1 Wy v ) p g lattice >

where & consists of one or several codimension-one subvarieties on the torus; in the natural
coordinates (t,...,¢,) of these tori, the Hamiltonian flows (run with complex time)
2=J0H,,,/0z (i =1,...,m) are straight-line motions and the coordinates z; = z; (¢, ..., 4,,)
are meromorphic in (¢, ...,4,,).

Let me now interpret this definition. Since the flow evolves on the m-dimensional tori

T™ = C™/lattice, the coordinates z; remain finite on the affine part (i.e. non-compact)

k+m

N {H;,=¢; zeC"

i=1
of that torus and therefore some or all of the coordinates z,, ..., z,, must blow up along & in
a meromorphic fashion. This is to say that & is the codimension-one subvariety along which
some of the z; have a pole. By the definition above, the flow (1) is a straight-line motion on
T™; it must therefore intersect the subvariety & in at least one place (see figure 1) unless the
flow remains in the divisor 2. Conversely, through every point of & there is a straight-line
motion and therefore a Laurent expansion around that point of intersection. Hence the differ-
ential equations must admit Laurent expansions that depend on the m — 1 parameters defining
2 and the k+m constants ¢; defining 7™; i.e. they depend on

(k+m)+(m—1) =n—1

free parameters. These ideas are implicit in Kowalewskaja’s (18894, b) investigation of the
dynamics of the rigid body.

Ficure 1. The flow on T™.

TueoreM 1. Necessary condition for algebraic integrability (Adler & van Moerbeke 19825).
If the Hamiltonian flow z = f(z) is algebraically completely integrable, then this system of differential
equations must admit Laurent expansion solutions in t such that

(a) each z; blows up for some value of t, and

25 [ 47 ] Vol. 315. A
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382 P. VAN MOERBEKE
(b) at that value of t the Laurent expansion solution z, where
Z.

() = RO+ MVt +2P R+ ), k€ Z with some k; > 0, (2)

admits n— 1 free parameters, unless the flow stays within the divisor 9.
Now consider Hamiltonian flows that are (weight)-homogeneous in the following sense:

Siladizy, a9z = a%itifi(zy, ..., 2,), VaeC. (3)

For this flow to be algebraically completely integrable, the differential equations (1) must admit
Laurent expansion solutions (2), depending on n— 1 free parameters. For this to occur we must
have k; = g; and the coefficients in the expansion must satisfy, at the Oth step,

iz, 2D) 2" =0, i=1,..,n, (4)
and at the £kth step,
L —kI) z® = a polynomial in z©@, ..., z*¥ VD for k> 1, 5
poly
where % is the Jacobian map of (4):
0
a &
¥ = 6I+Ii t.. ] (6)
z 10 g

Ifn— 1 free parameters are to appear in the expansion, they must either come from the nonlinear
equations (4) or from the eigenvalue problem (5), i.e. % must have at least n—1 integer
eigenvalues. These are far fewer conditions than expected, because of the fact that each
sufficiently homogeneous constant of the motion may lead to an integer eigenvalue of £, which
I explain below.

I now proceed to show that a constant of the motion H(z), homogeneous in the sense that
for g; as in (3) and some k€ Z,

H(agi Zyyeeny adn zn) = ak H(Z), Yo e C, (7)

implies that £ is an eigenvalue of £ unless 0/1/0z vanishes for every solution of (4). To see this
observe that the vector z°(¢) = (29¢79, ..., 2% t79») with z{(¢) satisfying (4) is a special solution
of 2 = f(z). Then { = (L &9, ..., £ #79) is a solution of the variational equation

<= <§£ =20) €>

around the special solution z°(f) with the vector {° being an eigenvector of Z with eigenvalue

I. If H(z) is a constant of the motion for z = f(z), then {0H/0z, {) is a constant for any solution
of the variational equation, which implies that / = k£ must hold unless this expression vanishes
for every solution of (4). To conclude, the homogeneity k£ of the constant H must be an
eigenvalue of Z (see Yoshida 1983).

The criterion of theorem 1 together with this conclusion can effectively be used to pin down,
among a family of Hamiltonian systems (depending, say, on various parameters), those that
are algebraically completely integrable. Although the sufficiency of the criterion of theorem 1
remains to be shown in full generality, I shall indicate how it might work in practice. If the
mechanical motion is algebraically completely integrable, then, according to the criterion, the

[ 48 ]
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ALGEBRAIC METHODS IN MECHANICS 383

operator £ must have n— 1 integer eigenvalues; as mentioned above, these are fewer conditions
than expected, because of the fact that the known constants of the motion (for example, the
energy and the trivial constants) may already lead to integer eigenvalues of &#. Once such a
subfamily of Hamiltonian systems has been found, one must show that they are algebraically
completely integrable. The argument can be broken up according to the following four steps.

(i) One must show the existence of the Laurent expansions, which requires an argument
precisely every time £ is an integer eigenvalue of %, and therefore # — £/ is not invertible (see
equation (5)).

(i1) One shows the existence of the remaining constants of the motion in involution so as
to reach the number m+£.

(ii) For given ¢,,...,¢,, the set

2 = {the Laurent solutions z(#) = (£ 9(z{® 4+ z{" t+...)), <i<n such that Hy(z(t)) = ¢;}

defines one or several (m — 1)-dimensional algebraic varieties (divisor), having the property that

k+m
N {H,=c¢,zeC}UD

i=1

is a smooth compact, connected variety with m commuting vector fields independent at every
point, that is a complex algebraic torus 7™ = C™/lattice. The flows J(0H,,,/0z), ...,
J(0H,, ,,/0z) are straight-line motions on 7'™.

(iv) A great deal of information can be obtained about the periods and the action-angle
variables from the divisor 2.

Next I explain how these ideas can be used on an example. Consider the motion of a solid
inanunbounded, irrotational,incompressible fluid (considered last century by G. R. Kirchhoff);
they have the form

b= pxoH/,
(8)

i = px OH/p+1x OH/d,

where peR3? is the velocity of a point fixed relative to the solid and /e R? is the angular
velocity of the body expressed with respect to a frame of reference also fixed relative to the
solid. Also, H is a quadratic polynomial in p and /, which accounts for the kinetic energy of
the solid and the liquid. This motion can be regarded as a geodesic motion on the group of
rigid motions £, = SO(3) x R? with a left-invariant metric, or by reduction, as a Hamiltonian
flow on the coadjoint orbits of its dual Lie algebra, identified with so(3) x R3. Hence the motion
has the trivial coadjoint orbit invariants {p,p)> and {p, ). It transpires that this is a special
case of a more general system of equations written as

& = x' X OH/0x' +x" X aH/E)x”,}
(9)

¥ = x" x OH/x' +x' x OH/Ox",

where ¥ = (x;, x,,%,) and x” = (x,, x5, %;). The first set can be obtained from the second by
putting
(', 2") = (L p/e) (10)

[ 49 ] 25-2
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384 P. VAN MOERBEKE

and letting e—0. The latter set of equations is the geodesic flow on the group SO(4) for a
left-invariant metric defined by the quadratic form H, which can be written in short as

X= [X,0H/0X], Xeso(4), (11)
0 —x Xy —X,
X 0 —x, —x

where X = —XZ %, 01 —x: = (Xij)1<¢,j<4- (12)
Xy X Xg 0

Often it is more convenient to use the coordinates z’' = (z,, z,,z;) and z” = (z,, z;, z5) with
z;=x;+%,, and z;,, =x;—%;_3 (1 <i<3); they correspond to the decomposition of
s0(4) ~ s0(3) @ so(3). In these coordinates the equations become z = f(z), i.e.

2 =2 x0H[0z/, 2’ =2"x0H/0z"; (13)
the quadratic form H depends on 21 parameters, which by conjugation can be reduced to 15.
For present purposes let / take the simpler form

1 6 3

H(z) =35 izl A Z?"'izl At i+s Zi Zivs (14)
with the non-degeneracy assumption (A;—2A;) (A,—A;) (A;—A,) (A,—A) (A;—A,) (Ag—A)
Ayq Ags Az # 0. The equations have, in addition to the energy @, = H, two trivial constants
of the motion

Q,=22+22+22 and Q,=zi+z2+2z).

The Laurent solutions (2) have £; = 1 (1 < ¢ < n) and have, therefore, simple poles; the three
constants of the motion @,, @, and @, are quadrics, so that 2 is a triple eigenvalue of &,
as follows from the general argument above. Moreover, the quadratic nature of the differential
equations z = f(z) implies that — 1 is an eigenvalue of Z. The fact that g; = £, = 1 in (6) implies
Tr.# = 6; hence the two remaining eigenvalues (positive or zero) must add up to 1. Therefore,
one of the eigenvalues of £ must be 0 (another then being, automatically, 1); this is achieved
only when the set of six nonlinear homogeneous quadratic equations

2O+ f(z) =0 (15)

governing the leading term z(? of the expansion admits a curve of solutions rather than a discrete
set of points, as one would expect from a dimension count. Using arguments based on the
principles (i) to (iv), one concludes that the geodesic flow on SO(4) is algebraically completely
integrable if and only if the equations (15) have a curve in common; this occurs precisely in
the three cases described in the next theorem.

TrEOREM 2 (Adler & van Moerbeke 1984). The geodesic flow on SO (4) for the metric defined by
the non-degenerate quadratic form (14) is algebraically completely integrable if and only if
(1) The quadratic form H is diagonal with respect to the coordinates (12) of SO(4), t.e.
2H= 3 AyXy with Ay=(B;—p)/ (24—, Ppoa;eC (Manakov's (1976) metric).
1<i<j<4a
Then the extra-invariant @, isquadratic and the flow is astraight-line motion on two-dimensional
complex algebraic tori C?/lattice (Abelian variety), where the lattice is generated by the four

vectors
4

2 0 a ¢
b

> 0.
0 4 ¢ b ]

] for appropriately chosen g, 4, c€C, such that Im [i

[ 50 ]
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More precisely
4
N {Q; = ¢;, ze C% = Prym(6/¥,)\(2 = a curve of genus 9),
i=1

where the elliptic curve € is defined as

€y = {(t,, ty, b5, t,) € P?(C) such that 2¢; @, has rank 3, i.e. a sum of 3 squares}  (16)

and % is a double cover of €, ramified at the four intersection points of the line 24 ¢, ¢, = 0 with
%, (figure 2). A Prym variety is an Abelian variety (complex algebraic torus) constructed from

Ficure 2. The four intersection points of the line X4 £;¢; = 0 with €,,.

a double cover € of a curve €,: if 7 is the involution on € that interchanges the sheets of €,
then 7 extends by linearity to a map 7: Jac(€) - Jac(€), where Jac(€) is the Abelian variety
defined by the periods of the curve €. Up to points of order two, Jac(%) splits up into an even
part Jac(%,) and an odd part Prym(%/%,). The periods of this Prym variety provide the exact
periods of the motion in terms of (explicit) Abelian integrals; see Haine (1983, 1984) and the
Appendix to Adler & van Moerbeke (19824) by D. Mumford. Observe that the requirement
on the form of 4,; is equivalent to the identity

[X, ]+ [a, 0H/3X] = 0

for diagonal matrices a = diag (., ...,,) and f = diag (f,, ..., 8,). That is to say that the
flow (11) can be rewritten as

(X+ah)' = [X+ah OH/OX +ph], X,0H/dXeso(n) (17)

with an indeterminate 4. For the sake of this discussion choose 7 to be arbitrary. This is a flow
in the dual of the Kac—Moody Lie algebra

M
&L =38l(n,R) = {A = 3 A K, A;egl(n,R), M arbitrary}

for the somewhat unusual pairing

{4,B),= X tr(4;B;).

iHj=—1

The Lie algebra % has a natural decomposition
g = g—oo,—l'*_"s’po,oo;
J
where Ly = {Z A h*, A, e gl(n, [R)};
k:1

observe that ¥, _, =% __ _, and %¢, =%, ,. The group underlying &_, _, acts
coadjointly onto #, ,, according to the customary rule of conjugation, followed by registering

[ 51 ]
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386 P. VAN MOERBEKE

the non-negative powers of 4 only. The orbits described in this way come equipped with a
symplectic structure. All the functions invariant under the action of . itself commute along
those orbits; in particular, the flow (17) evolves on the coadjoint orbit through X+ahe %
and 0H/0X+ ph is the gradient of a function invariant under #. Therefore, by the theorem
of Adler (1979), Kostant (1979) and Symes (1980), this flow has plenty of constants in
involution, and by a theorem of Adler & van Moerbeke (19804, 4) the flow linearizes on the
Abelian variety defined by the periods of the curve " (in short: Jac(#")) defined by

Qh,z) =det(X+ah—2zI) =0

and, to be more specific, on Prym(A /A ), where A, is the curve obtained from X~ by
identifying (z,h) > (—2z, —#&). It is interesting to observe that the tori obtained by the
asymptotic methods and those built from the orbits in the Kac-Moody Lie algebra are not
tdentical but only isogeneous (i.e. obtained by doubling some periods), as shown by Haine (1983).

Going back to the X; coordinate and taking an appropriate limit when €0, leads to the

Hamiltonian
H=3(c; B+e, 5+cg 5+, p3+ b, p5+ b5 05)
with ¢; and 4; satisfying
¢y C3(bg—by) +eg¢,(by—bg) +¢,¢y(by—b,) = 0.

This is the case of the rigid body in a fluid, which was integrated by Clebsch.
(2) The quadratic form
H=

DO | =

6 3
DIW I DY /\i, i+3 25 Zi+3 (18)
1 1
satisfies (let A3 = A;—A;)
(’\%4, ’\gm Age) (A12 A46_A13 A45)2
— 2 _ 2 _ 2
=A21A54A32A65A13A46[(A25 As0) > (4ss jM) > (4 j%)}

A32A65 13 <46 21 54

with the product A,y Ays Agq being rational in Ay, ..., Ag.
Then the extra invariant @, is quadratic and the flow linearizes on two-dimensional
hyperelliptic Jacobians. More precisely,

F] {Q; = ¢;, 2eC8 = Jac(6)\Z

where 2 represents a divisor of genus 17, which contains 4 translates of the @-divisor in
Jac(%), each of which is isomorphic to %, and where the hyperelliptic curve % is again a double
cover of the curve €, defined by (16); in this case €, is isomorphic to P'. The periods of the
motion are given by the periods of the hyperelliptic curve €. For this metric, it is interesting
to point out that, up to now, the Kac-Moody Lie algebra interpretation of this motion is
unknown; therefore the method of Laurent expansions is the only one available for this case.

Now let us have a closer look at the geometry of the Laurent solutions and the divisor 2.
Make an appropriate linear change of variables z—y and consider a new basis @, ..., @, for
the linear span of quadrics @, @5, @3, @4:

Qi =vi—y3 Qi=2yi+yl Q= 2y;+y}
Q= (41— 9a)*+ (Y2—¥5)+ (y3—¥6)*-

[ 562 ]
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Then the affine variety N${Q; = ¢;, z€ C® comes equipped with two commuting Hamiltonian
vector fields of a simple kind, one of which has the form

9= Y2Ye Yo =—Ys(¥1+Ys)s Gz = —yz(y1+y4),}
Yo =YsYs Ys = —2YsYs Yo = —2Y1Y,.

(19)

One verifies that the invariant manifold embedded into projective space

I {Qi = ¢;y3, ye P

1

]
T w

intersects the hyperplane at infinity y, = 0 according to eight curves isomorphic to P?, four
of which (L,, ..., L,) are simple covers, and four of which (L, ..., L}) are double covers, of P!;
the variety [ is singular (normal crossings) along L], ..., L; and smooth along L,, ..., L, (figure
3). The solutions to the system of differential equations (19) intersect L; transversely, and at
each point of L; the vector fields are doubly ambiguous; however, the solutions to (19) totally
ignore the lines L; and the same facts hold for the other vector field commuting with the first.

L,

Ly

Ficure 3. The variety 1.

To regularize (i.e. make the flow parallel) the flow at infinity, one must blow down the variety
along the lines L; and separate the two sheets of 7 along L;. The new complex surface obtained
in this fashion is compact, complex and smooth and has two commuting vector fields on it;
it is therefore a complex algebraic torus (Abelian surface) and the eight curves at infinity turn
into four hyperelliptic curves, intersecting triply into four points.

Finally, taking the fluid limit €0 yields

H =31 a;[l;— (a, +a,+a3—a) p;)?

which is the Lyapunov—Steklov case of rigid motion in fluids.
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388 P. VAN MOERBEKE
(3) The quadratic form H can be reduced to the simple form

H=2(y,yst Y295 Ys¥s) — (35— 1) (45 —¥,95) + (3s+1) (¥3—y,4,)

after a linear change of variables from z to y and after replacing H by an appropriate lincar combination

of Qu, Q, and H.

This is legitimate because it does not change the corresponding Hamiltonian vector field. Then
the differential equations take on the form

. . 2s s—1

Y1 = Ys3Ys, Ys = 3—1 ?/5?/6"'35_1 Y2Ys,
. . s+1 2s

Y2 = YaYs> Ys =35+1 y1y6+3§+1 Y3Ya>

. s—1 s+1 . s+1 s—1

Ys = — B YalYs+Yi Ys+ 9 Y1Y2> Ye¢= 9 YaYstYsYs— 9 Y1Y2-

This Hamiltonian flow has a quartic invariant ¢,, in addition to the three quadratic invariants

Q. @, and @, = H and
4
N {Q; = ¢;, ze C%
1

becomes a complex algebraic torus after completion with a divisor &2, which is a curve of genus
25 intersecting itself at 8 points. The smooth model (i.e. after blowing up the intersection points)
of this curve has genus 17 and is a fourfold unramified cover of a curve € of genus 5. The latter
is a ramified cover of a hyperelliptic curve €, of genus 2; in fact, all the dynamics takes place
on Prym (€/%,), which provides the periods of the motion and on which the flow linearizes.
For this metric, the Kac-Moody interpretation is missing as well.

To conclude, the method of Laurent expansion enables one to find, among a family of
Hamiltonian systems, those that are algebraically completely integrable. The expansions can
then be used to manufacture the tori, without ever going through the delicate procedure of
blowing up and down. Information about the tori can then be gathered from the divisor 2.

The support of a National Science Foundation grant no. 8102696 is gratefully acknowledged.
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Discussion

J. T. Stuart, F.R.S. (Department of Mathematics, Imperial College, London, U.K.). It seems strange
that the use of Kac—Moody algebras may not give the tori correctly, but perhaps with period
doubling, in contrast with the statement that the correct tori would be obtained by asymptotics.
This indicates a need for caution in interpretation of the result for tori calculated from use of
Kac-Moody algebras.

P. vaN MOERBEKE. A striking example of this phenomenon already appears in Jacobi’s geodesic
flow problem on ellipsoids. The natural coordinates are not meromorphic on the tori but only
their squares, if one linearizes the problem via Kac-Moody Lie algebras. In contrast these
natural coordinates are meromorphic on the actual invariant surfaces and on their natural
completion into tori by using the Laurent expansions. The relation between the two sets
of tori is as follows: one set can be obtained from the other by doubling some but not all
periods.

M. TaBor (Department of Applied Physics, Columbia University, New York, U.S.A.). Can algebraically
integrable systems admit movable (i.e. positions dependent on initial conditions) essential
singularities or rational branch points? If not, for what classes of integrable system would such
singularities be allowed?
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390 P. VAN MOERBEKE

P. vAN MoOERBEKE. Theorem 1 implies that for almost all initial conditions the solution to an
algebraically completely integrable system blows up in a meromorphic way after some finite
(complex) time; therefore, if a solution was to develop an essential singularity at all, it would
be so for a very thin set of initial conditions; it is strongly suspected that even this does not
happen. In the definition of algebraic complete integrability I should point out the
importance of the requirement that the coordinates be meromorphic functions on the tori. This
excludes all bad behaviour of the solutions.
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